Korovkin approximations inLp-spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subdivision schemes inLp spaces

Subdivision schemes play an important role in computer graphics and wavelet analysis. In this paper we are mainly concerned with convergence of subdivision schemes in Lp spaces (1 ≤ p ≤ ∞). We characterize the Lp-convergence of a subdivision scheme in terms of the p-norm joint spectral radius of two matrices associated with the corresponding mask. We also discuss various properties of the limit...

متن کامل

Matrix Summability and Korovkin Type Approximation Theorem on Modular Spaces

In this paper, using a matrix summability method we obtain a Korovkin type approximation theorem for a sequence of positive linear operators defined on a modular space.

متن کامل

Korovkin-Type Theorems in Weighted Lp-Spaces via Summation Process

Korovkin-type theorem which is one of the fundamental methods in approximation theory to describe uniform convergence of any sequence of positive linear operators is discussed on weighted Lp spaces, 1 ≤ p < ∞ for univariate and multivariate functions, respectively. Furthermore, we obtain these types of approximation theorems by means of A-summability which is a stronger convergence method than ...

متن کامل

Abstract Korovkin-type theorems in modular spaces and applications

Korovkin-type theorems in modular spaces and applications C. Bardaro ∗ A. Boccuto † X. Dimitriou ‡ I. Mantellini § Abstract We prove some versions of abstract Korovkin-type theorems in modular function spaces, with respect to filter convergence for linear positive operators, by considering several kinds of test functions. We give some results even with respect to an axiomatic convergence, whose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1976

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1976.63.153